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Abstract

Matching web services and client requirements in the form of goals is a significant challenge

in the discovery of semantic web services. The most common but unsatisfactory approach to

matching is set-based, where both the client and web services declare what objects they require

and what objects they can provide. Matching then becomes the simple task of comparing

sets of objects. This approach is inadequate because it says nothing about the functionality

required by the client or the functionality provided by the web service. As an alternative,

we use the Frame Logic as implemented in Flora-2 to specify web service capabilities and

client requirements, including their preconditions, postconditions, and ontologies, implement a

logic-based discovery agent using Flora-2, demonstrate its usefulness in a medical appointment

making scenario, and show its efficiency both theoretically and by benchmarking. The result is

an expressive yet concise representation scheme for semantic web services, and a practical,

efficient, powerful, and fully implemented matching engine based purely on logical inference

for web service discovery, with direct applicability to Web Service Modeling Ontology and Web

Service Modeling Language, because both are based on Frame Logic.
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1 INTRODUCTION

Given a semantically rich enough description of web service capabilities and client requirements, semantic web service discovery tries to

determine which web service is in a position to satisfy best the requirements of the client. Matching is the main operation performed during the

discovery process and takes two parameters: a formal description of what the requester desires and a formal description of what a web service

provides as a service. Its job is to decide if the web service can satisfy the requirements of the requester. At the same time, the web service may

have some preconditions before it can be called, so the matching operation must also check whether the client and/or state of the world can

satisfy these preconditions.

Among the existing semantic web service frameworks, we take Web Service Modeling Ontology (WSMO) (Fensel et al., 2007) as our starting

point in our discussion of semantic web service discovery, as it allows us to formally distinguish between user requests (called ‘‘goals’’ in WSMO

terminology) and web service specifications and uses the same formalism for specifying both. WSMO itself is based on the Web Service Modeling

Frame-work (WSMF) (Fensel & Bussler, 2002) and has four main components, namely, Ontologies, Web Services, Goals, and Mediators.

WSML (de Bruijn, 2008) represents a class of related languages used to describe ontologies, web services, and goals in conformance to the

WSMO framework. It has a solid logic foundation, namely, Frame Logic (or F-Logic in short) (Kifer, Lausen, & Wu, 1995; Kifer & Lausen, 1989)

Abbreviations: F-Logic, Frame Logic; FLOG4SWS, Frame LOGic 4 Semantic Web Services; FOL, First Order Logic; WSML, Web Service Modeling Language;
WSMO, Web Service Modeling Ontology; UDDI, Universal Description Discovery and Integration.
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— a powerful logic language with object modeling capabilities. WSML consists of five variants, which are WSML-Core, WSML-DL, WSML-Flight,

WSML-Rule, and WSML-Full. Each language variant provides different levels of logical expressiveness, as explained in detail in the study of de

Bruijn (2008).

There are several discovery approaches used in WSML (Keller et al., 2004). Keyword-based discovery is based on simple syntactic matching

of goals and web services at the non-functional level. Set-based ‘‘lightweight’’ discovery works over simple semantic descriptions that take into

account the postcondition and effect of goals and web services. Set-based ‘‘heavyweight’’ discovery works over richer semantic descriptions

by taking into account precondition, assumption, postcondition, and effect statements, as well as the relationships between them. Heavyweight

discovery based on WSML flight uses query containment reasoning tasks (where the results of one query are always guaranteed to be a subset

of some other query) for the matchmaking.

Different kinds of match have been defined for the set-based approach (Keller et al., 2004). These are summarized below.

• Exact Match happens when the items delivered by the web service W match perfectly the items specified in the goal G. No irrelevant

objects are returned by the service.

• Subsumption Match happens when items returned by the service W is a subset of the objects requested in the goal G.

• Plugin Match happens when items delivered by the service W are a super set of the objects requested in the goal G.

• Intersection Match happens when the delivered items of the service W have a nonempty intersection with the set of relevant objects for

the requester as specified in the goal G.

The problem with the set-based approach, no matter what underlying logic is used to represent sets of objects, is that even if the set of objects

requested in the goal are indeed returned by the service, there is no guarantee that the desired operation has been performed to obtain these

objects. Furthermore, what may be required by the execution of a service may not be some new objects but rather a change in the relationship

status of some already existing objects. Alternatively, some new objects may be desired by the goal, provided that certain relationships exist

among these objects. We should also not overlook the fact that before the web service can be called, it is usually not sufficient to only have

certain parameters supplied to the service: Some other conditions may need to be true also, before the web service can be reliably called.

It is clear that the pure set-based approach cannot answer these needs. What is needed is at least a first-order logic-based formalism and

methodology that utilizes some form of inference. To perform a match between a request in the form of a goal and web service specifications,

logical entailment should be carried out to determine whether the web service has all its requirements met before being called, and whether the

service provided by the web service will satisfy the needs of the client, while maintaining the relationships between input and output objects

as required by the client. The choice of logical formalism for specifying goals and web services, on the other hand, must (a) allow relatively

uncomplicated specification of web services and goals, (b) permit efficient execution of inference engines during the matching process, and (c)

be powerful enough to effectively specify goals and web service capabilities.

Our work reported here achieves all these goals. We can summarize our contributions as follows:

1. We specify a sublanguage of F-Logic, which we call FLOG4SWS (Frame LOGic 4 Semantic Web Services) with implicit existential and

universal quantifiers (depending on where the formula is used) that permits efficient goal-directed deduction, as in the case of logic

programming,

2. We clearly state the proof commitments (in terms of logical entailment) necessary for a successful match,

3. We implement a logical entailment-based (intelligent) matching agent using Flora-2, demonstrating not only the feasibility of our approach

but also its practicality, and finally,

4. We benchmark the execution of the matching engine under different scenarios, with results showing that our approach is scalable, both in

terms of the number of web services that are involved in each match and also in terms of the complexity of the logical expressions making

up the pre and postconditions.

We chose F-Logic (Kifer et al., 1995; Bayram & Sharifi, 2016) as the starting point for the specification language of our matching agent, because

it is the underlying logical basis of WSML, and our semantic descriptions of ontologies, goals, and web service capabilities can be easily translated

into the syntax of WSML in a straightforward manner. Using F-Logic and its Flora-2 implementation allowed us to leverage the underlying

inference capability of Flora-2 and to concentrate on the higher level inference tasks that are relevant to matching, rather than the chores of

implementing an inference engine from scratch.

Because WSML is based directly on F-Logic (Kifer et al., 1995), our implementation, available for download at (Bayram, Sharifi, & Ataee, 2019),

is a showcase for how WSML web services and goals can be represented in Flora-2 and how the Flora-2 engine can be used to perform logical

entailment-based matching between goals and web services.

The remainder of this article is organized as follows. Our sublanguage of F-Logic used to describe ontologies, goals, and web services, as

well as the matchmaker intelligent agent architecture is described in Section 2. In section 3, we have a sample ontology, goal, and web service

specification that the matchmaker agent can use as inputs, demonstrating the power and convenience of using logic enhanced with frames.

Highlights of the matchmaker agent implementation in Flora-2 are given in Section 4. Section 5 gives benchmarking results for the matcher,

demonstrating the scalability of our approach. Section 6 describes other prominent matching approaches reported in literature and compares
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them with our approach. Section 7 is the conclusion and future research directions. Finally, the precise syntax of FLOG4SWS is given in

Appendix A as an Extended Backus Normal Form grammar.

2 THE INTELLIGENT SEMANTIC WEB SERVICE MATCHMAKER AGENT

In this section, we point out the logical components of web service and goal specifications that play a significant role in the matchmaking process,

define a sublanguage of F-Logic (called FLOG4SWS) for specifying semantic web services, explain the precise relationship between FLOG4SWS

and WSMO, state the proof commitments that must be shown true for a match between a goal and a web service to be successful, and finally

present the overall matchmaker agent architecture.

2.1 Logical components of web service and goal specifications

In our model of web service and goal specification in F-Logic, the desired computation by a requester can be specified in the form of inputs

and relations on these inputs (goal.pre), as well as outputs and relations on these outputs (goal.post). The inputs and outputs may be required

to be in a certain relationship as well after the computation. Furthermore, the requester may desire a new state of the world (goal.effect) once

the execution of a web service is completed. On the service provider side, the capability provided by a web service is specified in the form of

preconditions (ws.pre), which must be true before the web service can be called postconditions (ws.post), which the web service guarantees will

be true once its execution is completed, assumptions about the state of the world before the web service can be reliably called (ws.assumption),

as well as the changes to the state of the world that are guaranteed to be in existence when the web service completes its execution (ws.effect).

There is also the state of the world before the web service is called (worldBefore). Lastly, we assume the existence of a common ontology (co) that

contains definitions of concepts, constraints, and logic rules that can be used in the goal or web service description, as well as local ontologies of

each goal and web service, containing definitions and logic rules (which we shall denote by goal.ont and ws.ont) that are local to the goal or web

service. We can safely assume there is no naming conflict between local ontologies and other ontologies, because each ontology can be assigned

a unique name space in the web environment.

2.2 FLOG4SWS: A sublanguage of F-logic used for specification of goals, web services, and ontologies

Although it would be desirable to use a specification language that is as powerful as possible, one has to be careful about (a) efficient imple-

mentability of logical inference needed to verify the validity of the proof commitments derived from the specifications and (b) understandability of

the specifications. Even in the case of first-order logic, unrestricted first-order formulas can easily become very complicated, hard to understand,

verify, and test. Furthermore, efficiently proving logical entailment in full first-order logic (when a proof exists), even when using the resolution

principle (Gallier, 1985) or some of its derivatives, is not an easy proposition. What is needed is a compromise: a ‘‘clean’’ and concise subset of

first-order formulas that are easily understood and can efficiently be used in determining the validity of certain implications that will guarantee a

satisfactory match but is at the same time expressive enough in the context of web service discovery.

In order to achieve this goal, we use a sublanguage of F-Logic in our web service and goal specifications. There is no explicit use of quantifiers:

Formulas used in goal.pre are assumed to be ground, because the goal needs to be providing input data to the web service; variables in ws.pre

that are not also in ws.post are assumed to be existentially quantified; all variables in goal.post are assumed to be existentially quantified as well.

Variables in ws.pre that are also in ws.post are assumed to be universally quantified. Any variable in ws.post that does not already occur in ws.pre

is assumed to be universally quantified, although this case is not expected to happen in realistic situations. goal.pre and ws.post are conjunctions

of positive molecules and predicates; ws.pre and goal.post on the other hand are can involve conjunction, disjunction, and negation connectives.

Our choice of sublanguage allows us to have a powerful, yet practical logic-based matching algorithm and strikes a fine balance between

expressiveness and efficient implementation. The proof commitments (given below) are verified with the same kind of efficiency that logic

programmes are executed in a logic programming framework. Benchmarking results reported in Section 5, as well as the complexity analysis

presented in Section 4.8 lend support to this claim and demonstrate that our logic-based matching is indeed scalable, both in terms of logical

expression complexity, as well as the number of web services that are matched against.

Ontologies that are part of a semantic web service specification can contain any facts and rules that are allowed in F-Logic. Furthermore, the

matchmaker agent verifies that no constraints specified in the ontologies are violated in any stage of the matching process. The precise syntax of

FLOG4SWS is given in Appendix A as an Extended Backus Normal Form grammar, with additional explanations.

2.3 Relationship of FLOG4SWS to WSMO

Web Service Modeling Ontology, or WSMO, as the name implies, is a high-level ontology spelling out the components of a semantic web service

specification, without committing itself to any specific language. Using the Meta Object Facility MOF (Object Management Group, 2016), the
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main concepts of WSMO at the meta-level, taken from Fensel et al. (2007), are given in Listing 1 (some low-level concepts have been left out

due to space considerations).

WSMO has four top-level concepts: Ontology, goal, web service, and mediator. Nonfunctional property, imported ontology, and used mediator

attributes are common to the ontology, service, and goal concepts. An ontology instance can include concept definitions, relations, functions,

instances, as well as axioms. A service instance has an embedded capability instance and an interface instance. A capability instance basically

describes what the web service can deliver, and an interface instance specifies how it interacts with the requester, as well as other web services.

The interaction with the requester is specified through a choreography specification, and the interaction with other web services in order to

provide its functionality is specified through an orchestration specification.

Because the focal point of our work is logic-based discovery of semantic web services, FLOG4SWS does not include constructs for all the

components of WSMO. Specifically, issues of mediation, non-functional properties, choreography, and orchestration are not addressed. On the

other hand, components that are central to logic-based discovery are present: The ontology component is covered completely by leveraging

the available constructs of F-Logic (concepts, relations, instances, and axioms), and capability specification of both goals and web services are

given first-class treatment. In a sense, the current specification of FLOG4SWS has the core ingredients needed for logic-based specification and

discovery of semantic web services but can be extended to include the other components as well.

2.4 Proof commitments that must be checked for validity before a match is successful

The proof commitments or obligations (i.e., what must be proven before a match can succeed) required for our logical inference-based matching

are as follows:

1. co goal.ont ws.ont goal.pre ⊨ ws.pre: The precondition of the web service should be logically entailed by the common ontology, local

ontologies of the goal and web service, and what is provided/guaranteed by the goal (i.e., goal.pre).

2. co goal.ont ws.ont goal.pre (ws.pre ⇒ ws.post) ⊨ goal.post: If the conditions for the web service call are satisfied, then the requirements of

the goal (i.e., its postcondition) should be satisfied. Note how we assume that the execution of the web service guarantees the validity of the

implication ws.pre ⇒ ws.post.
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3. worldBefore ⊨ ws.assumption: The assumptions the web service makes about the world must be true before it can be called. These

assumptions are independent of what the client supplies to the web service (e.g., flights canceled due to weather conditions).

4. worldBefore (ws.assumption ⇒ ws.effect) ⊨ goal.effect: The state of the world after the web service is called, as required by the goal, should

be guaranteed. Again note how we assume that the web service execution guarantees the validity of the implication ws.assumption ⇒ ws.effect.

In the WSMO framework, assumptions and effects need not be checked, because they are supposed to represent real-world conditions.

However, even if they represent real-world conditions, there is no reason why real-world conditions could not have some internal representation

in the computer domain that reflects the state of the world. We thus assume that the state of the world is represented in some externally

accessible, global knowledge base. Then, we can interpret ‘‘effects’’ as changes to the state of this global knowledge base. Assumptions can also

be checked against this global knowledge base. Preconditions/postconditions of a web service or goal, on the other hand, refer to the state of

the common ontology and local ontologies of the goal and web services. We should note, however, that our matching engine, being a proof of

concept, does not attempt to verify proof commitments 3 and 4, because their implementation would be practically identical to the verification

of proof commitments 1 and 2.

2.5 The intelligent matchmaker agent architecture

Figure 1 depicts the architecture of our intelligent matchmaker agent. At the center of the figure sits the agent itself. It has access to web

service specifications, goal specifications, the common ontology, and mediation services. Because it is implemented in Flora-2, it has access to

all the underlying functionality of the Flora-2 engine as well. The agent verifies proof commitments one by one for each goal-web service pair

and reports the result at the end. There is no ‘‘degree of match’’ computed, because we are interested only in web services that satisfy the

requirements of a goal completely.

FIGURE 1 The proposed semantic web service matchmaker intelligent agent architecture
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‘‘Mediation’’ is a broad term used to describe transformations that ensure compatibility among components of a system. At the simplest level,

mediation can be carried out between different terminologies so that equivalences between terms are established (e.g., ‘‘car’’ is the same thing

as ‘‘automobile’’ etc.). Although our architecture includes a mediation component, in our actual implementation, we concentrated on the logical

reasoning part and left the mediation part out altogether. The mediation component can be incorporated into the implementation later on in a

straightforward manner.

3 SPECIFYING WEB SERVICES, GOALS, AND ONTOLOGIES IN FLORA-2

In this section, we give a representative example of (a) a web service specification for making appointments in hospitals, (b) a goal for consuming

the appointment service, and (c) the common ontology used by the web service and goal. The logical expressions in the preconditions and

postconditions contain a variety of constructs, such as reified objects, calls to predicates defined in the common ontology and local ontologies,

as well as all the logical connectives, in order to give a sampling of what is available in FLOG4SWS.

3.1 Sample web service specification

Listing 2 depicts the specification of a web service for making doctor appointments. The precondition requires an object of concept

RequestAppointment to be provided by the goal, containing the request information. ?DS, ?PN, ?From_date, ?To_date, and ?Age are logic variables

that will be bound to the corresponding values that should be provided by the requester. Before the match is successful, it must be verified that

the age of the patient is more than 18 (for some reason!), there is a hospital in the same country that the patient lives in, and there is a doctor with

the correct specialization area in that hospital who is available in the requested date range. Note that the object identifier of the object of type

RequestAppointment is an anonymous variable, because the web service is not concerned with the actual name of the input object, only its type

and whether is has the required attributes. Also, observe how part of the web service precondition (Doctor instance and hospital predicate)

depends on its local ontology, given in Listing 3, part of it (lives_in_country and greater predicates) depends on the common ontology,

given in Listing 5, and the rest depend on the information provided by the goal through its precondition, given in Listing 4. The postcondition of

the web service specification makes available an Appointment object containing information about the appointment date, doctor name, patient

name, and hospital name. For simplicity, we modeled a date as a single integer.

The local ontology used by the web service specification, given in Listing 3, represents an abstraction of an actual local knowledge base that

might be used by the web service that is being semantically described by the specification. This ontology has instances of the Doctor concept and

facts (in the form of predicates) relating hospitals to their cities.
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3.2 Sample goal for consuming an appointment service

We have in Listing 4 a goal for consuming an appointment making service. The goal gives specific information about the desired appointment,

such as the required specialty, hospital name, the age of the patient, and the desired date range. As part of the precondition, the fact that the

patient ashley lives in Istanbul is given. This fact will be used to deduce that ashley lives in Turkey and can only make an appointment at

a hospital in Turkey through the web service whose specification is given in Listing 2. The appointment requester is picky about the returned

result: The hospital should not be Bosphorus or Dardanelle. This requirement is enforced in the postcondition of the goal.

We note how logic variables link the preconditions and postconditions of web services. In fact, the usual scenario is that information ‘‘flows

from’’ the precondition of the goal ‘‘into’’ the precondition of the web service, then ‘‘into’’ the postcondition of the web service, and finally ‘‘into’’

the postcondition of the goal.

3.3 Common ontology

The common ontology, given in Listing 5, contains constraints that must hold true to have a valid knowledge base, the concepts Appointment

and RequestAppointment whose instances are used in the preconditions and postconditions, the concept Specialty and its three instances

gynecology, ophthal-mology, and otolaryngology, utility predicates greater, less, is_equal and between, factual information
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about which city is in which country through the predicate city_country, as well as a logic rule, which relates people to their countries, based

on the city they live in, defined in the predicate lives_in_country.

Obviously, where information will be placed (local or common ontology) is a design decision, and some information placed in the common

ontology here could have been put inside the local ontologies of web services, or vice versa. However, it is common sense to place rules that can

be used by more than one web service specification, or by both goals and web service specifications, inside an ‘‘outside’’ ontology that can act as

a common ontology.

4 IMPLEMENTATION OF THE MATCHMAKER AGENT IN FLORA-2

In this section, we describe the implementation of the matchmaker for FLOG4SWS in some detail. First, we have an overview of Flora-2, followed

by its specific features that were made use of in our implementation. Then, we describe the configuration (meta-data) file. This is followed

by a description of the top level loop in the matcher and the specifics of proving the commitments that are needed for a successful match.

Constraint checking, an important part of keeping the ontology in a ‘‘healthy’’ state, is explained next. Finally, we demonstrate how our choice of

a sublanguage of F-Logic results in an efficient proof procedure, which is the main workhorse of the matching process.

4.1 Overview of Flora-2

The proposed intelligent agent for semantic web service matching uses the Flora-2 reasoning engine. Flora-2 is a comprehensive object-based

knowledge representation and reasoning platform. The implementation of Flora-2 is based on a set of run-time libraries and a com-

piler to translate a unified language of F-Logic, HiLog, and Transaction Logic (Bonner & Kifer, 1998, 1994) into tabled Prolog code
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(Kifer, Yang, Wan, & Zhao, 2018). Flora-2 supports a programming language that is a dialect of F-Logic and has numerous extensions, such as a

natural way to do meta-programming in the style of HiLog, logical updates in the style of Transaction Logic, and a form of defeasible reason-

ing described in Wan, Grosof, Kifer, Fodor, and Liang (2009). Flora-2 provides strong support for modular software development through its

unique feature of dynamic modules. Some important extensions, such as the versatile syntax of Florid path expressions, were inspired by Florid

(May, 2000).

4.2 How we use Flora-2

Our implementation of the semantic web service matchmaker makes use of many of the unique features of Flora-2. Goals and web service

specifications are represented as objects with reified internal parts. Modules are used to temporarily insert facts into the database in an

isolated environment and verify the proof commitments for each goal-web service pair. Higher order features are used for verifying the proof

commitments.

In the following sections, we give the core parts of the implementation of our matcher in Flora-2. As mentioned before, the programme does

not implement the proof commitments regarding the assumptions and effects of web services, but they are similar in essence to the implemented

proof commitments for preconditions and postconditions and extending our program to deal with them is straightforward.

4.3 Meta-data file

Information about the files in which the goal, web service, and the common ontology are stored should be specified in a meta-data file. An

example meta-data file is given in Listing 6.

4.4 Entry point into the matcher

Listing 7 contains the predicate %go that is the entry point into the matcher. The percent sign in the predicate name means that the result of this

predicate call should not be tabled. We preferred a nontabled implementation in order to avoid any possible complications caused by tabling.

In the body of the %go predicate definition, the two used modules are emptied through a call to %initModules (Line 3); meta-data is loaded

into UtilModule (Lines 4 and 5); web services, goals, and common ontology are loaded into Ringmodule (Lines 7–11); and finally, the %run

predicate is called (Line 16) with ?Result as a parameter. The result of the matching operation is a list of (goal, web service) pairs that match each

other and is returned in the ?Result parameter. The module name RingModule was inspired by boxing matches that take place inside a ring.
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4.5 Pairing goals and web services for matching

In Listing 8, we have the definition for the %run predicate. Using the built-in setof construct of Flora-2, which implicitly backtracks on the goals

on the right hand side of the ‘‘such that’’ (|) clause, each (goal, web service) pair is tested for a match, and the successful ones are returned in the

?SuccessfulMatches variable. Matching is performed through the %match_once predicate.

4.6 Proving the commitments for a successful match

In Listing 9, we have the code that attempts to prove the commitments specified in Section 2.4.

The predicate %match_once (Lines 1 and 2) makes sure that the %match predicate is called only one time, and no backtracking is performed

on it if it succeeds. %match retrieves the precondition and postcondition of the web service and goal using the meta-unification operator %

(Lines 7–11). The goal precondition is inserted transactionally using the built-in t_insert predicate into the module where the match operation

will take place (Line 13), and the web service precondition is proven, establishing the proof commitment co goal.ont ws.ont goal.pre ⊨ ws.pre.

The act of proving ws.pre binds variables in ws.pre, and if those variables occur in ws.post, they are bound in ws.post as well. Because

the execution of the web service, by definition, guarantees the validity of the implication ws.pre ⇒ ws.post, goal.post is inserted into the

module (Line 17), effectively implementing the modus ponens rule of logic. Then, goal.post is proven (Line 19), verifying the proof commitment

co goal.ont ws.ont goal.pre ws.pre ⇒ ws.post ⊨ goal.post. The fact that insertions are made transactionally guarantees that they will be

automatically deleted when another (goal, web service) pair is tried (upon backtracking) in the %run predicate.

Note that the predicate %check_constraints is called to check that the ontology itself is not already violating any constraints (Line 5) and

after insertions into the ring module to verify that the new state does not violate any constraints either (Lines 14 and 18).
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4.7 Checking constraints

Listing 10 contains the code for checking constraint violations. When a constraint in an ontology (whether local or common) is violated, an error

message is printed, and the constraint violation causes the match to fail. The %check_constraints predicate (Lines 1–4) takes in its first

parameter the module where the matching operation is taking place, and returns in its second parameter either violation or no_violation,

depending on whether a constraint has been violated or not. The %check_constraints2 predicate (Lines 6–10) takes a list of constraint labels

in its first parameter, the module where the matching operation is taking place in its third parameter, and using predicate %check_constraint

returns in its second parameter a list of tagged constraint names, showing whether each constraint is violated or not. succesful(c) means

constraint c was not violated, and failure(c) means it was violated. Finally, the predicate %verify_results (Lines 18–27) iterates over the

result of %check_constraints2, both printing violated constraints, and also returning in its third parameter the result of the verification, that

is, violation or no_violation.

4.8 Efficiency of the matching process

The main work of matching is done mainly through the predicate %prove, which takes two parameters. The first parameter is a logical expression

(‘‘goal’’ in the sense of Prolog) to be proved against a knowledge base, contained in the module given in the second parameter. The knowledge

base consists only of positive facts or instances (or both), as well as definitions coming from local and common ontologies. The logical expression

is allowed to have logical connectives and (in Flora-2 syntax, ‘‘,’’), or (in Flora-2 syntax, ‘‘;’’) and not (in Flora-2 syntax, ‘‘∖+’’), facts and concept

instances where all free variables are implicitly existentially quantified. The semantics of ∖+ is ‘‘negation as finite failure.’’

The %prove predicate is called twice by the %match predicate: first to prove the web service precondition, given the initial knowledge base

consisting of the facts and instances provided by the goal (in the WSMO sense) precondition, as well as the contents of the local and common

ontologies, and the second time to prove the goal (in the WSMO sense) postcondition, against a possibly updated set of positive facts and

instances due to the changes caused by the execution of web service.

Given a first parameter that is a simple fact (in the Prolog sense), the call to %prove(..) will be proven (or disproven) in one step if the

knowledge base does not contain a definition of that predicate with a body. If its first parameter is an object with k attributes, due to the fact

that in Flora-2, an object ida1 → v1, a2 → v2, … , ak → vk is represented internally as a set of k predicates a1id, v1, a2id, v2, … , akid, vk, proving

ida1 → v1, a2 → v2, … , ak → vk means proving a1id, v1, a2id, v2, … , akid, vk, which requires at most k steps (we assume that attribute values are

not computed through rule definitions but are given directly, as would be expected when the goal provides the data in its precondition).

If the first parameter is a logical expression containing connectives and, or and not, %prove(..) calls itself recursively (Lines 21–25 in Listing 9).

A simple induction on the number of connectives n in the logic expression shows that in the worst case, there are 2n + 1 calls to %prove(..).
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TABLE 1 Input parameters to the generator

# Parameter Identifier Role

1 Number of goals ?howManyGoals Determines how many goals should be created.

2 Number of web services ?howManyWebServices Determines how many web services should be created.

3 Name of goals ?goalName Determines the prefix of goal object names.

4 Name of web services ?wsName Determines the prefix of web service object names.

5 Depth of logic tree ?Level Determines the depth of the logic tree representing

ws.pre and goal.post conditions.

6 Percentage of positive terms ?PosPercentage Determines the probability of using the negation

operator (∖ + ) in front of sub-expressions in pre

and post conditions. If ?PosPercentage is 100

means there is no negation operator at all.

7 Percentage of conjunctions ?ConjPercentage Determines the probability of using conjunction (,)

in the inner nodes of the logic tree. For example,

if ?ConjPercentage is 70, that means 70% of inner

nodes in the logic tree are expected to be (,) and

30% are expected to be (;) .

8 Number of conjunctions ?howManyConj The number of facts/objects in goal.pre and

ws.post. Should always equal 2?Level due to the

way goals and web services are constructed.

9 Number of attributes ?howManyAttributes Determines how many attributes each object in

pre and post–conditions has.

Even assuming that each call to %prove(..) tries to prove the existence of an object with k attributes, we have an upper bound of k(2n − 1)
proofs of simple facts for a call to %prove(..). We thus conclude that the time complexity of %prove(..) is linear with respect to the number

of logical connectives in the logical expression that is its first parameter.

In the ontologies, one is free to define Flora-2 predicates and constraints on the state of the ontology, without any limitation. If such

definitions are present, and calls are made to the definitions (implicitly in the case of constraints, explicitly inside a web service precondition or

goal postcondition), it is natural that the above computation does not necessarily apply. In such a case, it is the responsibility of the web service

author to make sure that the definitions included in the ontologies do not cause inefficiency.

5 BENCHMARKING THE MATCHER

In this section, we present the results and analysis of benchmarking our matcher in terms of time. Benchmarking was performed on a Windows 7

64-bit 2.86GHz platform with 8GB of RAM using Ergo Suite version 1.2 (Solon). Ergo Suite is a commercial product based on the Flora-2 system,

developed and marketed by Coherent Systems.1 First, the methodology and test sets we used are explained. Then, the results are described and

analysed to see if they fit the expectations. As can be seen in the sections below, the matching operation is linear with respect to both logical

complexity, as well as the number of web services that are matched against, demonstrating the scalability of our approach.

5.1 Parameters to the benchmark generator

The specific aim of the benchmarking effort has been to determine the scalability of our logic-based matching scheme in two dimensions: (a)

complexity of logical expressions used in the pre and postconditions of goals and web services and (b) number of service descriptions against

which a specific goal is matched. To achieve this aim, we developed a benchmark generator (Bayram et al., 2019), implemented in Flora-2, whose

task is to produce sample goals and web services based on nine input parameters. These input parameters are summarized in Table 1. We define

a configuration as a 9-tuple consisting of the parameters 1 to 9.

5.2 Sample generated goals and web services for benchmarking

In Listing 11, we have a sample goal and in Listing 12 a sample web service generated for the configuration (1, 1, gg, ww, 2, 50, 50, 4, 2).

1 http://coherentknowledge.com/
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5.3 Code modifications to measure execution time

To measure the exact time needed by Flora-2 inference engine for finding a complete match against a set of web services, we modified the main

predicate of the matcher as shown in Listing 13. At Line 12, we use XSB epoch_miliseconds predicate to get the current time of the system. At

Line 14, the %run predicate is called to find the matching web services. At Line 16, again the current time of the system is obtained, and at Line

18, the difference between the two times is calculated in milliseconds and written into an output file (Lines 20–22).
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5.4 Test configurations and results

We defined sets of configurations to test the efficiency of the matcher for its scalability in terms of number of web services, as well as their

complexity. Test configuration sets were divided into three categories.

The first category contains configurations, which are different only in the number of web services. Configurations sets 1 to 11 given in Table 2

are in the form of {1,X,2,100,100,4,4}, {1,X,2,100,4,3}, and {1,X,3,100,8,3} wherein X can be 50, 100, 500, and 1,000 (in last two sets).

The last column in Table 2 shows the average time of five independent runs of the configuration. It is expected that as the number of web

services increases, the time of inferencing increases linearly. The results show that the expectation is true indeed. Figure 2 depicts the time

trends of configurations 1 to 3, 4 to 7, and 8 to 11.

The second category contains the configuration sets, which are different in logical complexity of the pre and postconditions of both goal

and web services. We consider the logical complexity of Flora-2 expressions used in pre and postconditions as the number of logical operators

multiplied by the number of attributes in each frame (this is due to the fact that in Flora-2 a frame with n attributes is internally represented

as conjunctions of n binary predicates). It is expected that by increasing the logical complexity, average time increases linearly. Table 3 gives

the actual timing data obtained in the test runs, which are also depicted graphically in Figures 3 and 4. It can be clearly seen that the average

inference time trend is again linear.

TABLE 2 Configuration sets and average time spent for matching

# # of goals # of web services # of Level %Pos. %Conj. # of Conj. # of Attr. Avg. time (ms)

1 1 50 2 100 100 4 4 182.8

2 1 100 2 100 100 4 4 336.8

3 1 500 2 100 100 4 4 1,741.2

4 1 50 2 100 100 4 3 144

5 1 100 2 100 100 4 3 281

6 1 500 2 100 100 4 3 1,477.2

7 1 1000 2 100 100 4 3 3,101

8 1 50 3 100 100 8 3 246.6

9 1 100 3 100 100 8 3 493

10 1 500 3 100 100 8 3 2,611.6

11 1 1000 3 100 100 8 3 5,765.8

FIGURE 2 Running time trends of configurations 1 to 11 (different number of web services)

FIGURE 3 Graph of matching time versus logical complexity (50 web services and 100 web services)
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FIGURE 4 Graph of matching time versus logical complexity (500 web services)

TABLE 3 Average matching time for different logical complexities

# of web services

50 100 500

# of operators × # of attributes 9 140.4ms 281ms 1,444.2ms

12 182.8ms 336.8ms 1,741.2ms

21 246.6ms 493ms 2,611.6ms

TABLE 4 Average matching time at different conjunctive
and positive percentages (200 web services)

Positive %

Conjunctive % 0% 25% 50% 75% 100%

0% 720.8 780 620.8 539.8 480.6

25% 592.8 570.8 639.6 1067 627

50% 502.4 496 556.4 798.8 686.8

75% 436.8 449.2 486.8 568 777

100% 368 386.8 383.8 443 986

The last configuration sets are different only in positive and conjunction percentages (Table 4). The number of attributes is fixed at 3.

Figure 5 shows the timing of the configuration sets as a 3-D surface. It can be seen that the time dimension has local peaks when the

conjunctive percentage is either 25% or 100%, and the positive percentage is either 75% or 100%, respectively. We consider this an interesting

observation, without any implications with respect to scalability.

6 RELATED WORK ON MATCHING

In previous work (Ataee & Bayram, 2015), we presented a way of representing web service and goal specifications in Flora-2 by using the

built-in if-then-else construct, as well as the insert command of Flora-2. We also described simple matcher that can check whether a

single goal specification matches a single web service specification. No consistency checking of the ontologies was available. In this work, we

have a much more comprehensive and systematic approach, which can deal with multiple web service and goal descriptions, has checking for

ontology consistency, does not make explicit use of the insert command or the if-then-else construct of Flora-2 in the goal and service

specifications, and has been shown to be efficient both analytically and through benchmarking.

Roman, Kopeckỳ, Vitvar, Domingue, and Fensel (2015) describe WSMO-Lite, a lightweight ontology of web service semantics based on a

bottom-up specification called SAWSDL, which is the first SWS standard produced by the World Wide Web Consortium in 2007. WSMO-lite

makes use of four semantic aspects of services, that is, function, behaviour, information model, and nonfunctional properties as the basis for

semantic automation. Information semantics are represented using domain ontologies (as in WSMO). Functional semantics are represented

with capabilities (preconditions and effects) and/or functionality classifications (not available in WSMO) using some classification ontology.

Nonfunctional semantics are represented using an ontology (in WSMO, this is a component of lower level constructs, not the web service

as a whole). Of special interest is the way they represent behavioural semantics through annotating the service operations with functional

descriptions, that is, capabilities and/or functionality classifications, providing the means to schedule calls to operations. These roughly correspond

to choreography specifications of WSMO, where rule activations during choreography execution are mapped to operation calls but are more

explicit and straightforward. They also include support for combining RESTful services with WSDL-based ones in a single semantic framework

through two HTML microformats that mirror WSDL and SAWSDL in the documentation of RESTful services.
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FIGURE 5 Running time trends of configurations, which are different only in conjunction and positive percentages

WSMO-lite is a fundamentally bottom-up approach, aiming for adoption in industrial web service settings. FLOG4SWS, on the other hand,

represents a top-down, purely logic-based approach that has the potential to be developed further to incorporate aspects of SWS specification,

which it does not currently have. The behavioural semantics of WSMO-lite for example would fit very nicely into our logical framework in the

context of choreography specification.

Baklouti, Gargouri, and Jmaiel (2015) propose an extension of OWL-S in order to improve description and discovery of web services in

linguistic information systems. Their idea is to integrate nonfunctional linguistic properties and their relationships inside the advertisements and

semantically annotate some elements of the linguistic web service descriptions. Being based on OWL-S, highly specialized and restricted to only

non-functional properties means that their work is not directly comparable with ours.

Semantic Web Service Discovery using natural language processing techniques is proposed by Sangers, Frasincar, Hogenboom, and Chepegin

(2013). Queries posed in natural language are analyzed and matched against web service descriptions specified using WSML (specific type

not stated), and then a search using various algorithms is performed. Again their work is not directly comparable to ours, but the two are

complementary, since their Semantic Web Service Discovery engine can be adapted to accept FLOG4WS as the ‘‘back end’’ instead of WSML.

An application of semantic web services using OWL-S, as well as a hybrid matching algorithm used for service discovery is presented by

Zapater, Escrivá, García, and Durá (2015). The application area is ‘‘allowing travelers to find road traffic information web service (WSs) that best

fits their requirements.’’ Their matching algorithm is set-based and not directly comparable with ours.

Kifer, Lara, Polleres, and Zhao (2004) propose a discovery method using proof commitments in transactional logic. Because they place no

restrictions on the logic statements that can take part in the preconditions and postconditions of web service capabilities or goal specifications;

however, it can be expected that a very heavy burden is placed on the reasoning engine. Furthermore, their proof commitments involve an

existential quantifier for web service specifications, so that discovery of a suitable web service is delegated to the deduction process (i.e.,

computation carried out for the satisfaction of the proof commitment) completely. In our case, our proof commitments are logical entailments

in F-Logic, with well-defined restrictions on goal and web service specifications in order to have efficient goal-directed proofs of the proof

commitments. To make our matching agent even more efficient, our proof commitments involve only one goal and one web service: Individual

goals and web services are checked iteratively to see if the proof commitments hold between them. Consequently, we have been able to build

an actual, practical implementation for our matching agent.

In Paolucci, Kawamura, Payne, and Sycara (2002b); Sycara, Paolucci, Ankolekar, and Srinivasan (2003); Srinivasan, Paolucci, and Sycara (2005,

2004); Kawamura et al. (2003), the authors describe a matching algorithm for automatic dynamic discovery, selection, and interoperation of web

services based on DAML-S. They show a representation for service capabilities in the Profile section of a DAML-S description and a way to

semantically match advertisements and requests. In similar work, a way to map DAML-S service profiles into UDDI records and using the encoded

information to perform semantic matching is described by Paolucci, Kawamura, Payne, and Sycara (2002a). The actual matching is performed by

the ‘‘Matching Engine’’ component, which makes use of the ‘‘DAML=OIL Reasoner’’ to compute the level of the match. Because the approach

used in DAML-S is fundamentally set-based, it suffers from the same drawbacks as other set-based methods of discovery.

The matchmaking method described by Bener, Ozadali, and Ilhan (2009) assigns matchmaking scores to condition expressions in OWL-S

documents written in SWRL. It uses a reasoner to determine subsumption relationships and compute scores for each advertisement. This

approach is also a set-based and does not specify any proof commitments explicitly.

Sycara, Klusch, Widoff, and Lu (1999) consider matchmaking between service provider agents and service requester agents. Middle agents

perform the matchmaking between the requester and service provider agents. They present the agent description language LARKS and discuss

the matchmaking process using LARKS. A specification in LARKS is a frame, which includes slots ‘‘context,’’ ‘‘input,’’ ‘‘output,’’ ‘‘inconstraints,’’

and ‘‘outconstraints.’’ Their matchmaking algorithm determines the relationship among two semantic descriptions by computing the respective

subsumption relationship and is again set-based.

Rambold, Kasinger, Lautenbacher, and Bauer (2009) provide a high-level survey and ranking of web service discovery methods but do not give

any details regarding the specific matching algorithm used by the surveyed methods.
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Srinivasan et al. (2004) propose OWL-S/UDDI matchmaker. They embed OWL-S profile information inside UDDI advertisements before

performing a match. Their algorithm matches the outputs/inputs of the request against the inputs/outputs of the published advertisements. The

match between the inputs or outputs depends on the relationship between the OWL concepts to which the objects belong. So, the proposal is a

set-based approach using OWL-S. Any reasoning done is for determining subsumption relationships. An implementation of a matcher using the

OWL-S/UDDI matchmaker is given by Celik and Elci (2006).

A matchmaking algorithm based on bipartite graphs for semantic web services specified in OWL-S is presented by Ilhan and Bener (2007).

The approach carries out semantic similarity assignment using subsumption, properties, similarity distance annotations, and WordNet. No logical

inference is carried out, except for subsumption.

Di Noia, Di Sciascio, and Donini (2007) formalize the matching problem in general using Description Logic (DL), and devise ‘‘Concept Abduction’’

and ‘‘Concept Contraction’’ as nonmonotonic inferences in DL for modelling matchmaking in a logical framework. They also give algorithms for

semantic matchmaking based on the devised inferences as well. Similarly, Grimm, Motik, and Preist (2006) use a framework for annotating web

services using DL , and they show how to realise service discovery by matching semantic service descriptions, applying DL inferencing. DL is a

very limited form of logic, compared with the first-order logic, and matching based on DL specifications is not directly comparable with our work,

which deals with F-Logic specifications.

Della Valle and Cerizza (2005) implement in F-Logic a matching mechanism that relies on web service-goal mediators. They use Flora-2 in the

matching procedure to evaluate the similarity rules embedded in the description of each mediator and return references to the discovered web

services and the degree of matching (exact, subsumed, plug-in, and intersection). It is clear that their approach is strictly set-based and does not

involve logical inference.

The WSMO-MX service matchmaker, described by Klusch and Kaufer (2009), uses different matching filters to retrieve semantic web services

written in a dialect of WSML-Rule. WSMO-MX recursively computes ‘‘logic-based and syntactic similarity-based matching degrees and returns

a ranked set of services that are semantically relevant to a given query. The matching filters perform ontology-based type matching, logical

constraint matching, and syntactic matching.’’ The proposed system is ‘‘approximative’’ and does not guarantee with 100% certainty the suitability

of the discovered services to satisfy the needs of the requester. This is in line with the authors' belief that semantic web research has started

to shift towards ‘‘more scalable and approximative rather than computationally expensive logic-based reasoning with impractical assumptions’’

Paydar and Kahani (2014). Our work disproves this belief: It is possible to have logic-based reasoning that is not prohibitively expensive, provided

that an appropriate subset of logic, which is expressive enough to practically specify goal requirements and web service capabilities is used.

In other related work, Chabeb, Tata, and Ozanne (2010) describe a new algorithm for matching web services in YASA4WSDL. The matching

algorithm consists of three variants based on three different semantic matching degree aggregations. Their method uses an algorithm using

extended semantic annotation, based on web service standards. The critical problems in web service discovery such as how to locate web services

and how to select the best one from large numbers of functionally similar web services are explained by Fan, Ren, and Xiong (2005). Küster and

König-Ries (2008) propose a graded relevance scale for semantic web services matchmaking as measurements to evaluate SWS matchmakers

based on such graded relevance scales.

7 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Using a sublanguage of F-Logic to specify ontologies, web services and goals, and Flora-2 as the implementation tool, we built an intelligent

matchmaker agent for matching semantic web services and goals using a purely logical inference-based approach. We specified explicitly in terms

of logical entailment the proof commitments that must be verified before a match between a goal and web service can succeed. Our sublanguage

of F-Logic has implicit existential and universal quantifiers (depending on where the formula is used) that permits efficient goal-directed deduction

as in the case of logic programming, allows relatively uncomplicated specification of web services and goals, and is powerful enough to effectively

specify goals and web service capabilities as desired. We explained in some detail our implementation of the matchmaker agent, which makes

use of the higher order capabilities, reification and module facilities of Flora-2, as well as its built-in inference engine. Because ontologies are

part of the matchmaking process, and integrity of knowledge contained in the ontologies must be guaranteed, our matchmaker has a constraint

verification part as well. We illustrated the use of our sublanguage of F-Logic in the specification of web services, goals, and ontologies through

an appointment-making scenario, where the goal is to make a doctor appointment for a patient. Furthermore, we demonstrated the scalability of

our approach analytically and also by benchmarking the matching operation under various scenarios.

Our approach stands out among all other approaches to semantic web service matchmaking due to its purely logical basis, unambiguous

definition of what a match means in terms of proof commitments, and efficient implementation made possible through diligent selection of a

sublanguage of F-Logic for specifying goals, web services, and ontologies.

Our sublanguage of F-Logic used for specifying web services and goals in logical terms is open to further development. For future work,

we envisage the addition of a choreography component based on abstract state machines, as well as a mediation component to FLOG4SWS

and incorporating these into the matchmaker without affecting the efficiency of the proof procedure employed in it. Given the purely logical

specification of web services and goals, a logical inference-based composition of web services to achieve the functionality required by a goal

looks like a reasonable proposition as well. Yet, another direction in which this research can be advanced is the definition of a variant of WSML

that maps directly to our sublanguage of F-Logic that we use for specifying goals, web services, and ontologies and implementation of a translator
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from this variant of WSML to our sublanguage. Such an implementation could have the potential to make WSML a viable alternative in industry

for semantic web service specification.
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APPENDIX A: SYNTAX OF THE SUBLANGUAGE OF F-LOGIC USED FOR SPECIFICATION OF GOALS, WEB SERVICES, AND

ONTOLOGIES

In Listing 14, we have the Extended Backus Normal Form (EBNF) grammar for the sublanguage of F-Logic we used for specifying goals, web

services, and ontologies.

This grammar should be considered in conjunction with the full grammar of Flora-2 given in Kifer et al. (2018). In Flora-2 ‘‘Rule’’ defines a rule

with or without a right hand side. Left hand sides of rules are either inheritance relationships, membership relationships, or object declarations.

‘‘Body’’ stands for a rule body. Note that we allow any valid Flora-2 rule in the ontology, because Flora-2 is used to represent knowledge that is

common to goals and web services.

A constraint rule belongs to our sublanguage and should have on its left side the predicate ‘‘constraint’’ and the id of the constraint as its

parameter. Constraints are verified at various stages in the matchmaking process.

A ‘‘Fact’’ is either a predicate or an object with an object identifier. The nonterminal ‘‘Term’’ is used to define both predicates and terms in the

sense of Prolog.

Note the difference between facts and queries: inside facts, object identifiers must be ground terms, whereas inside queries, they must be

variables. The reason is that the provider of the fact knows the name of the fact, whereas the query does not care about the actual name of the

provided object, but rather its contents and the concept it belongs to.

Also note that objects always have to be reified (i.e., enclosed inside ${}). On the other hand, predicates that are inside queries (web service

precondition and goal postcondition) need not be reified. Inside a goal precondition and web service postcondition, they do need to be reified,

just like objects.

The logical connective and is represented by a comma (,), or is represented by a semi-colon (;), and not is represented by ∖+ as in Flora-2.
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